1. Point $J(p, q)$ is a vertex of quadrilateral $J K L M$. What are the coordinates of J^{\prime} after $J K L M$ is rotated 180° about the origin?

A $\left({ }^{-} p,{ }^{-} q\right)$

B $\left({ }^{-} p, q\right)$
$\mathrm{C} \quad\left(p,{ }^{-} q\right)$

D $\quad\left(q,{ }^{-} p\right)$
2. $\triangle G H I$ will be dilated by a scale factor of 3 , resulting in $\Delta G^{\prime} H^{\prime} I^{\prime}$.
What rule describes this transformation?

A $\quad\left(x^{\prime}, y^{\prime}\right)=\left(\frac{1}{3} x, \frac{1}{3} y\right)$

B $\quad\left(x^{\prime}, y^{\prime}\right)=(3 x, 3 y)$

C $\quad\left(x^{\prime}, y^{\prime}\right)=(x+3, y+3)$

D $\quad\left(x^{\prime}, y^{\prime}\right)=(x-3, y-3)$
3. $\Delta P^{\prime} Q^{\prime} R^{\prime}$ is the image produced after reflecting $\triangle P Q R$ across the y-axis. If vertex P has coordinates (s, t), what are the coordinates of P^{\prime} ?

A $\quad(t, s)$
B $\left(s,{ }^{-} t\right)$

C $(-s,-t)$
D $(-s, t)$
4. What is the rule for the transformation formed by a translation 2 units to the left and 3 units up followed by a 90° counterclockwise rotation?

A $\quad\left(x^{\prime \prime}, y^{\prime \prime}\right)=(-3 y,-2 x)$
B $\quad\left(x^{\prime \prime}, y^{\prime \prime}\right)=(x-2, y+3)$
C $\quad\left(x^{\prime \prime}, y^{\prime \prime}\right)=[-(y+3), x-2]$
D $\quad\left(x^{\prime \prime}, y^{\prime \prime}\right)=[-(y-2), x+3]$
5. The point $G(2,-7)$ is transformed according to the rule $\left(x^{\prime}, y^{\prime}\right)=(x+2, y-3)$. The image G^{\prime} of the transformation is then reflected over the line $y=x$, resulting in point $G^{\prime \prime}$. What are the coordinates of $G^{\prime \prime}$?

A $(4,10)$
B $\left(4,{ }^{-1} 10\right)$

C $\quad(-10,4)$

D $\quad(-4,10)$
6. $\Delta G^{\prime} H^{\prime} I^{\prime}$ is the image of $\Delta G H I$ after a transformation.

Which choice describes the transformation shown?
A reflection over x-axis
B reflection over y-axis
C $\quad\left(x^{\prime}, y^{\prime}\right)=(x-8, y)$
D $\quad\left(x^{\prime}, y^{\prime}\right)=(x, y-8)$
7. Point $J(p, q)$ is a vertex of $\triangle J K L$. What are the coordinates of J^{\prime} after $\triangle J K L$ is reflected across the line $y=x$?

A $\left({ }^{-} p,{ }^{-} q\right)$
B $(p,-q)$
C $\left(q,{ }^{-} p\right)$
D (q, p)
8. $\triangle X Y Z$ is dilated by a factor of $\frac{1}{2}$. What is the ratio of the area of $\triangle X Y Z$ to the area of its image, $\Delta X^{\prime} Y^{\prime} Z^{\prime}$?

A $4: 1$
B $2: 1$
C $1: 2$
D $1: 4$
9. $\triangle D E F$ is reflected across the line $y=x$.

Which matrix multiplication shows how to find $\Delta D^{\prime} E^{\prime} F^{\prime}$?
A $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{lll}4 & 5 & 6 \\ 1 & 3 & 1\end{array}\right]$
B $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{lll}4 & 5 & 6 \\ 1 & 3 & 1\end{array}\right]$
C $\quad\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{lll}4 & 5 & 6 \\ 1 & 3 & 1\end{array}\right]$
D $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]\left[\begin{array}{lll}4 & 5 & 6 \\ 1 & 3 & 1\end{array}\right]$
10. Triangle $M R T$ has vertices at $M(3,8), R\left(7,{ }^{-} 2\right)$, and $T\left({ }^{-} 5,{ }^{-} 4\right)$. If the triangle is to be translated by the rule $\left(x^{\prime}, y^{\prime}\right)=(x+3, y-2)$, which matrix expression models the translation?

A $\quad\left[\begin{array}{rrr}3 & 7 & -5 \\ 8 & -2 & -4\end{array}\right]+\left[\begin{array}{rrr}3 & 3 & 3 \\ -2 & -2 & -2\end{array}\right]$
B $\left[\begin{array}{rrr}3 & 7 & -5 \\ 8 & -2 & -4\end{array}\right]-\left[\begin{array}{rrr}-2 & -2 & -2 \\ 3 & 3 & 3\end{array}\right]$
C $\left[\begin{array}{rrr}3 & 7 & -5 \\ 8 & -2 & -4\end{array}\right]+\left[\begin{array}{rrr}-2 & -2 & -2 \\ 3 & 3 & 3\end{array}\right]$
D $\left[\begin{array}{rrr}3 & 7 & -5 \\ 8 & -2 & -4\end{array}\right]-\left[\begin{array}{rrr}3 & 3 & 3 \\ -2 & -2 & -2\end{array}\right]$
11. Which matrix calculation was used to transform $\triangle S T U$ to $\Delta S^{\prime} T^{\prime} U^{\prime}$?

A $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{rrr}-7 & -4 & -3 \\ 0 & 2 & 8\end{array}\right]$
B $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rrr}-7 & -4 & -3 \\ 0 & 2 & 8\end{array}\right]$
C $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rrr}-7 & -4 & -3 \\ 0 & 2 & 8\end{array}\right]$
D $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]\left[\begin{array}{rrr}-7 & -4 & -3 \\ 0 & 2 & 8\end{array}\right]$
12. $\triangle G H J$ with vertex matrix $\left[\begin{array}{rrr}-2 & 3 & 3 \\ 4 & 6 & -2\end{array}\right]$ is dilated by a factor of $\frac{1}{3}$. In the image $\Delta G^{\prime} H^{\prime} J^{\prime}$, what are the coordinates of the vertex that lies in the second quadrant?

A $\left(-\frac{7}{3}, \frac{13}{3}\right)$

B $\quad\left(-\frac{2}{3}, \frac{4}{3}\right)$

C $\quad\left(1,-\frac{2}{3}\right)$

D $(1,2)$
13. The vertices of quadrilateral GHIJ are $G\left({ }^{-} 1,{ }^{-} 1\right), H\left(3,{ }^{-} 2\right), I(2,4)$, and $J\left({ }^{-} 2,3\right)$. $G^{\prime} H^{\prime} I^{\prime} J^{\prime}$ is the image produced by translating quadrilateral GHIJ 6 units to the left. Which matrix represents $G^{\prime} H^{\prime} I^{\prime} J^{\prime}$?

A $\left[\begin{array}{cccc}-7 & -3 & -4 & -8 \\ -7 & -8 & -2 & -3\end{array}\right]$
B $\left[\begin{array}{rrrr}-7 & -3 & -4 & -8 \\ -1 & -2 & 4 & 3\end{array}\right]$
C $\left[\begin{array}{rrrr}-1 & 3 & 2 & -2 \\ -7 & -8 & -2 & -3\end{array}\right]$
D $\left[\begin{array}{rrrr}5 & 9 & 8 & 4 \\ -1 & -2 & 4 & 3\end{array}\right]$
14. $\Delta M^{\prime} N^{\prime} O^{\prime}$ is the image of $\triangle M N O$ produced by a translation 3 units left and 1 unit up. The vertex matrix for $\triangle M^{\prime} N^{\prime} O^{\prime}$ is $\left[\begin{array}{rrr}-1 & 2 & 4 \\ 1 & 6 & -3\end{array}\right]$. Which is the vertex matrix for $\triangle M N O$?

A $\left[\begin{array}{rrr}2 & 5 & 7 \\ 0 & 5 & -4\end{array}\right]$
B $\left[\begin{array}{rrr}-4 & -1 & 1 \\ 2 & 7 & -2\end{array}\right]$
C $\quad\left[\begin{array}{rrr}- \\ 2 & 1 & 3 \\ 4 & 9 & 0\end{array}\right]$
D $\left[\begin{array}{rrr}0 & 3 & 5 \\ -2 & 3 & -6\end{array}\right]$
15. Polygon $F G H I$ is represented by vertex matrix M.

$$
M=\left[\begin{array}{rrrr}
2 & 4 & 4 & 2 \\
-2 & -2 & -5 & -5
\end{array}\right]
$$

Which multiplication would be used to reflect polygon $F G H I$ across the x-axis?
A $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rrrr}2 & 4 & 4 & 2 \\ -2 & -2 & -5 & -5\end{array}\right]$
B $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rrrr}2 & 4 & 4 & 2 \\ -2 & -2 & -5 & -5\end{array}\right]$
C $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rrrr}2 & 4 & 4 & 2 \\ -2 & -2 & -5 & -5\end{array}\right]$
D $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]\left[\begin{array}{rrrr}2 & 4 & 4 & 2 \\ -2 & -2 & -5 & -5\end{array}\right]$

End of Goal 3 Sample Items

In compliance with federal law, including the provisions of Title IX of the Education Amendments of 1972, the Department of Public Instruction does not discriminate on the basis of race, sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, programs, activities, admissions or employment.

6 Objective:
Describe the transformation (translation, reflection, rotation, dilation) of polygons in the coordinate plane in simple algebraic terms.
Thinking Skill: Analyzing Correct Answer: D

Objective:
 3.01

Describe the transformation (translation, reflection, rotation, dilation) of polygons in the coordinate plane in simple algebraic terms.
Thinking Skill: Applying Correct Answer: D
Objective: $\quad 3.01$
Describe the transformation (translation, reflection, rotation, dilation) of polygons in the coordinate plane in simple algebraic terms.
Thinking Skill: Analyzing Correct Answer: A

9

Objective: 3.02
Use matrix operations (addition, subtraction, multiplication, scalar multiplication) to describe the transformation of polygons in the coordinate plane.
Thinking Skill:
Applying
Correct Answer: A

